
Linear Algebra & Geometry
LECTURE 14

• Linear operators

• Change of basis matrix

• Eigenvalues, eigenvectors

• Diagonal matrices



Example. (From the previous lecture)

Consider 𝜑:ℝ2 → ℝ2, 𝜑 𝑥, 𝑦 = (𝑥 + 𝑦, 𝑥 − 𝑦). Find 𝑀𝑆(𝜑) and 

𝑀𝑅(𝜑), where 𝑆 = { 1,0 , 0,1 } and 𝑅 = { 1,1 , 2,1 }.

To find 𝑀𝑅(𝜑): 
𝜑 1,1 = 2,0 = 𝑎 1,1 + 𝑏(2,1). Solving the system of 

equations ൜
𝑎 + 2𝑏 = 2

𝑎 + 𝑏 = 0
we get 𝑎 = −2, 𝑏 = 2.

𝜑 2,1 = 3,1 = 𝑐 1,1 + 𝑑(2,1). Solving the system of 

equations ቊ
𝑐 + 2𝑑 = 3
𝑐 + 𝑑 = 1

we get 𝑐 = −1, 𝑑 = 2. Hence, 𝑀𝑅 𝜑 =

−2 −1
2 2

.

Obviously, 𝑀𝑆 𝜑 =
1 1
1 −1

(because 𝜑 1,0 = 1,1 =

1 1,0 + 1(0,1) and 𝜑 0,1 = 1,−1 = 1 1,0 + (−1)(0,1)). 



What is the relation between matrices of an operator in different 

bases? How can we tell that two matrices are matrices of the same 

operator but  in different bases?

Theorem.

For every two bases 𝑅 and 𝑆 of 𝔽𝑛 and for every linear operator 
on 𝔽𝑛 there exists a matrix 𝑃 such that

𝑀𝑅
𝑅 𝜑 = 𝑃−1𝑀𝑆

𝑆 𝜑 𝑃
Proof.

Let 𝑃 = 𝑀𝑆
𝑅 𝑖𝑑 . Then 𝑃−1 = 𝑀𝑅

𝑆 𝑖𝑑 (because 

𝑀𝑅
𝑆 𝑖𝑑 𝑀𝑆

𝑅 𝑖𝑑 = 𝑀𝑅
𝑅 𝑖𝑑 ∘ 𝑖𝑑 = 𝑀𝑅

𝑅 𝑖𝑑 = 𝐼). By the last 

theorem, 𝑀𝑅
𝑆 𝑖𝑑 𝑀𝑆

𝑆 𝜑 𝑀𝑆
𝑅 𝑖𝑑 = 𝑀𝑅

𝑆 𝑖𝑑 𝑀𝑆
𝑅 𝜑 ∘ 𝑖𝑑 =

𝑀𝑅
𝑅 𝑖𝑑 ∘ 𝜑 ∘ 𝑖𝑑 = 𝑀𝑅

𝑅 𝜑 . QED

Note. The matrix 𝑃 is called the change-of-basis matrix.



Definition. 

Two 𝑛 × 𝑛 matrices 𝐴 and 𝐵 are said to be similar iff there exists 

a matrix 𝑃 such that 𝐴 = 𝑃−1𝐵𝑃. We denote similarity of 𝐴 and 𝐵
by 𝐴 ≈ 𝐵.

Note. Similarity should not be confused with row equivalence.

Fact.

Similarity of matrices is an equivalence relation on the set 𝕂𝑛×𝑛.

Fact.

Two matrices are similar iff they are matrices of the same linear 

operator in two bases.



Example. (cont-d)

Consider the last example, 𝜑:ℝ2 → ℝ2, 𝜑 𝑥, 𝑦 = (𝑥 + 𝑦, 𝑥 −
𝑦), 𝑆 = { 1,0 , 0,1 } and 𝑅 = { 1,1 , 2,1 }. It turned out that 

𝐴 = 𝑀𝑅 𝜑 =
−2 −1
2 2

and 𝐵 = 𝑀𝑆 𝜑 =
1 1
1 −1

. Verify 

that 𝐴 and 𝐵 are similar.

From the last theorem, the change-of-basis matrix is 𝑀𝑆
𝑅 𝑖𝑑 (or 

𝑀𝑅
𝑆 𝑖𝑑 , it works both ways, but 𝑀𝑆

𝑅 𝑖𝑑 is easier to construct). 

This means we must represent vectors from 𝑅 (transformed by 𝑖𝑑) 

as linear combinations of vectors from 𝑆. Nothing can be easier 

because 𝑆 is the unit vectors basis. Hence, 

𝑖𝑑 1,1 𝑆 = 1,1 𝑆 = 1,1 and 𝑖𝑑 2,1 𝑆 = 2,1 𝑆 =

2,1 . Finally, 𝑃 = 𝑀𝑆
𝑅 𝑖𝑑 =

1 2
1 1

. In order to verify this 

solution, we can check if 𝐴 = 𝑃−1𝐵𝑃. This requires finding 𝑃−1.



Finally, 𝑃 = 𝑀𝑆
𝑅 𝑖𝑑 =

1 2
1 1

. In order to verify this solution, 

we can check if 𝐴 = 𝑃−1𝐵𝑃. This requires finding 𝑃−1:
1 2 1 0
1 1 0 1

~(𝑟1 − 𝑟2)
0 1 1 −1
1 1 0 1

~(𝑟2 − 𝑟1)

0 1 1 −1
1 0 −1 2

~(𝑟2 ↔ 𝑟1)
1 0 −1 2
0 1 1 −1

, 𝑃−1 =

−1 2
1 −1

. 

𝐵𝑃 =
1 1
1 −1

1 2
1 1

=
2 3
0 1

, 

𝑃−1𝐵𝑃 =
−1 2
1 −1

2 3
0 1

=
−2 −1
2 2

. We look-up our 

matrix 𝐴 and … 𝐴 =
−2 −1
2 2

, bingo!



FAQ.

Is it enough, instead of checking if 𝐴 = 𝑃−1𝐵𝑃 to check if 𝑃𝐴 =
𝐵𝑃? It would save us the hassle of finding 𝑃−1!

It depends. If you know for a fact that 𝑃 is invertible then it is 

enough. Otherwise – not. For example, if 𝑃 is the zero matrix 

then, obviously, 𝑃𝐴 = 𝐵𝑃 while, equally obviously, 𝑃 is not a 

change-of-basis matrix.



EIGENVALUES AND EIGENVECTORS

Definition.
Let 𝐴 be an 𝑛 × 𝑛 matrix over 𝔽. Every scalar 𝜆 such that for a 
nonzero vector 𝑋𝜆 from 𝔽𝑛, 𝐴𝑋𝜆 = 𝜆𝑋𝜆 is called an eigenvalue of 
𝐴 and each 𝑋𝜆 is called an eigenvector belonging to 𝜆.

These things have a wide range of applications from differential 
equations, through big data systems, through graph theory.

Notice. 
Let 𝜑 be a linear operator. If for some scalar 𝜆 and for some 
vector 𝑋𝜆, 𝜑 𝑋𝜆 = 𝜆𝑋𝜆 then 𝜆 and 𝑋𝜆 are also called an 
eigenvalue and an eigenvector of 𝜑.



Example.

Find eigenvalues of 𝐴 =
0 −1 2
−2 −1 4
−2 −2 5

. (the corresponding 

𝜑𝐴 𝑥, 𝑦, 𝑧 = (−𝑦 + 2𝑧,−2𝑥 − 𝑦 + 4𝑧,−2𝑥 − 2𝑦 + 𝑧)).

This is equivalent to finding 𝜆-s for whom there exists nonzero 

vectors 

𝑎
𝑏
𝑐

such that 𝐴
𝑎
𝑏
𝑐

= 𝜆
𝑎
𝑏
𝑐

. Moving the right-hand side 

to the left, we reduce the condition to the homogeneous system

ቐ

−𝜆𝑎 − 𝑏 + 2𝑐 = 0
−2𝑎 + (−1 − 𝜆)𝑏 + 4𝑐 = 0
−2𝑎 − 2𝑏 + (5 − 𝜆)𝑐 = 0

≡ 𝐴 − 𝜆𝐼
𝑎
𝑏
𝑐

=
0
0
0

Nonzero solutions exist iff the rank of the coefficient matrix 

𝐴 − 𝜆𝐼 is smaller than its size, i.e., if det 𝐴 − 𝜆𝐼 = 0.



−𝜆 −1 2
−2 −1 − 𝜆 4
−2 −2 5 − 𝜆

=
𝑟3 − 𝑟2

−𝜆 −1 2
−2 −1 − 𝜆 4
0 −1 + 𝜆 1 − 𝜆

=
𝑡𝑎𝑘𝑖𝑛𝑔 𝑜𝑢𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 1 − 𝜆 𝑓𝑟𝑜𝑚 𝑟3

(1 − 𝜆)
−𝜆 −1 2
−2 −1 − 𝜆 4
0 −1 1

=
𝑐2 + 𝑐3

1 − 𝜆
−𝜆 1 2
−2 3 − 𝜆 4
0 0 1

= (1 − 𝜆)
−𝜆 1
−2 3 − 𝜆

=
𝑟2 − 𝑟1

1 − 𝜆
−𝜆 1
𝜆 − 2 2 − 𝜆

= 1 − 𝜆 2 − 𝜆
−𝜆 1
−1 1

=

1 − 𝜆 2(2 − 𝜆) = 0. Hence, 𝜆1 = 𝜆2 = 1 and 𝜆3 = 2.



Theorem.
A scalar 𝜆 is an eigenvalue for 𝐴 iff det(𝐴 − 𝜆I) = 0.

Proof. As in the example, instead of 𝐴𝑋 = 𝜆𝑋 we write 𝐴𝑋 =
(𝜆𝐼)𝑋 which leads to (𝐴 − 𝜆𝐼)𝑋 = Θ. Nonzero solutions to an 
𝑛 × 𝑛 homogeneous system of equations exist iff the determinant 
of the coefficient matrix is zero.

Fact.
For every eigenvalue 𝜆 of A the set 𝑊𝜆 = {𝑋 ∈ 𝕂𝑛|A𝑋 = 𝜆𝑋} is a 
subspace in 𝕂𝑛. The subspace is called an eigenspace for 𝜆.

Proof. 𝑊𝜆 is the solution space for (A−𝜆𝐼)𝑋 = Θ.

We are on familiar grounds here; we know how to deal with 
homogeneous systems of equations. We have to do it separately 
for each eigenvalue, though. 



Example – cont-d. Knowing that the eigenvalues are 𝜆1, 𝜆2 = 1

and 𝜆3 = 2, find eigenvectors of 𝐴 =
0 −1 2
−2 −1 4
−2 −2 5

and the 

dimension of each eigenspace.

For 𝜆 =1 our system of equations reads 
−1 −1 2
−2 −2 4
−2 −2 4

𝑎
𝑏
𝑐

=

0
0
0

. Since 𝑟3 = 𝑟2 and 𝑟2 = 2𝑟1 the rank of the matrix is 1 and 

the system is equivalent to −𝑎 − 𝑏 + 2𝑐 = 0 which means 𝑎 =
− 𝑏 + 2𝑐 and b, c run free. So, all eigenvectors for 𝜆 =1 look 

like (−𝑏 + 2𝑐, 𝑏, 𝑐) = 𝑏 −1,1,0 + 𝑐(2,0,1) and dim 𝑊𝜆1 = 2.



For 𝜆 =2 we get 
−2 −1 2
−2 −3 4
−2 −2 3

𝑎
𝑏
𝑐

=
0
0
0

. Row reducing the 

matrix we obtain

−2 −1 2
−2 −3 4
−2 −2 3

~
𝑟2 − 𝑟1, 𝑟3 − 𝑟1

−2 −1 2
0 −2 2
0 −1 1

~
𝑟1 − 𝑟3, 𝑟2 − 2𝑟3

−2 0 1
0 0 0
0 −1 1

~
1 0 −

1

2

0 1 −1
0 0 0

. The rank is 2, dimension of the 

solution space is 1. We get a −
1

2
c=0 and 𝑏 − 𝑐 = 0, i.e., 𝑐 = 2𝑎

and 𝑏 = 𝑐 = 2𝑎 and eigenvectors are (𝑎, 2𝑎, 2𝑎), for all a≠ 0 or 

𝑡(1,2,2) for all nonzero t ∈ ℝ. Hence, dim 𝑊𝜆2 = 1. 



Fact.

Suppose 𝐴 ≈ 𝐵 with 𝐴 = 𝑃−1𝐵𝑃. Then 

1. det 𝐴 = det(𝐵) (obvious)

2. for every 𝑛 ∈ ℕ, 𝐴𝑛 = 𝑃−1𝐵𝑛𝑃 (obvious)

3. det 𝐴 − 𝜆𝐼 = det 𝐵 − 𝜆𝐼 .

4. 𝐴 and 𝐵 have the same eigenvalues (a consequence of 3).

Proof (3). 𝐴 − 𝜆𝐼 = 𝑃−1𝐵𝑃 − 𝜆𝐼 = 𝑃−1𝐵𝑃 − 𝜆𝑃−1𝐼𝑃 =
𝑃−1 𝐵 − 𝜆𝐼 P hence 𝐴 − 𝜆𝐼 ≈ 𝐵 − 𝜆𝐼 so, by 1., their determinants 

are equal.

Corollary.

If 𝜆 is an eigenvalue of 𝐴 then it is an eigenvalue of every matrix 𝐵
similar to 𝐴. 



Theorem.

Let 𝜑 be a linear operator and let 𝑅 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a basis of 

𝔽𝑛. Then 

𝑀𝑅 𝜑 =

𝜆1 0 … 0
0 𝜆2 … 0

⋮ ⋮ ⋮
⋮ ⋮ ⋮
0 0 … 𝜆𝑛

(𝑀𝑅 𝜑 is a diagonal matrix) if and 

only if 𝜆1, 𝜆2, … , 𝜆𝑛 are eigenvalues of 𝜑 and 𝑣1, 𝑣2, … , 𝑣𝑛 are their 

eigenvectors.

Proof. (⇐)
For each 𝑖 = 1,2,… , 𝑛, 𝜑 𝑣𝑖 = 𝜆𝑖𝑣𝑖 = 0𝑣1 + 0𝑣2 +⋯+ 𝜆𝑖𝑣𝑖 +

⋯+ 0𝑣𝑛. Hence, the 𝑖 −th column of 𝑀𝑅 𝜑 is  

0
⋮
𝜆𝑖
⋮
0



(⇒)

Suppose 𝑀𝑅 𝜑 =

𝜆1 0 … 0
0 𝜆2 … 0

⋮ ⋮ ⋮
⋮ ⋮ ⋮
0 0 … 𝜆𝑛

. Then 𝜑 𝑣𝑖 𝑅 =

𝑀𝑅 𝜑 𝑣𝑖 𝑅 =

𝜆1 0 … 0
0 𝜆2 … 0

⋮ ⋮ ⋮
⋮ ⋮ ⋮
0 0 … 𝜆𝑛

0
⋮
1
⋮
0

=

0
⋮
𝜆𝑖
⋮
0

= 𝜆𝑖 𝑣𝑖 𝑅

i.e., 𝜑 𝑣𝑖 = 𝜆𝑖𝑣𝑖 . QED



Note. The existence of a basis consisting of eigenvectors is NOT 

guaranteed. For some matrices, similar diagonal matrix does not 

exist. 

Theorem.

An 𝑛 × 𝑛 matrix 𝐴 is similar to a diagonal matrix 𝐷 iff there exists a 

basis of 𝔽𝑛 consisting exclusively of eigenvectors of 𝐴. QED



Example - continued.

The theorem says that the matrix 𝐴 from the last example,

𝐴 =
0 −1 2
−2 −1 4
−2 −2 5

is similar to  𝐷 =
1 0 0
0 1 0
0 0 2

. We will find 

the change-of-basis matrix 𝑃. In slides 12 and 13 we found 

eigenvectors −1,1,0 and (2,0,1) for eigenvalue 1 and for 

eigenvalue 2. Thus, the basis of eigenvectors, 𝑅 = { −1,1,0 ,
2,0,1 , (1,2,2)}. Since 𝐴 is the matrix of 𝜑 in the standard basis, 

𝐷 = 𝑀𝑅(𝜑) = 𝑀𝑅
𝑆 𝑖𝑑 𝐴𝑀𝑆

𝑅 𝑖𝑑 and we must only construct P =
𝑀𝑆

𝑅 𝑖𝑑 which is easy: 𝑖𝑑 −1,1,0 = −1,1,0 = −1 1,0,0 +

1 0,1,0 + 0(0,01) hence, the first column of 𝑃 is 
−1
1
0

. In the 

same way we get the second and the third column of 𝑃.



Example - continued.

det 𝑃 = 0 + 1 + 0 − 0 + 2 − 4 = −1 ≠ 0

𝐷 =
1 0 0
0 1 0
0 0 2

𝑃 =
−1 2 1
1 0 2
0 1 2

−1 2 2
1 0 4
0 1 4

= 𝑃𝐷

𝐴 =
0 −1 2
−2 −1 4
−2 −2 5

−1 2 2
1 0 4
0 1 4

= 𝐴𝑃 Checks!

(Here, instead of 𝐷 = 𝑃−1𝐴𝑃 we have verified 𝑃𝐷 = 𝐴𝑃
because we know that 𝑃 is invertible).


